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Self-similar renormalization approach to barrier crossing processes
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Department of Applied Physics and Chemistry, University of Electro-Communications, Chofu, Tokyo 182-8585

~Received 23 March 1999!

An algebraic self-similar renormalization method developed recently for summation of divergent field-
theoretical series is applied to the thermally activated escape of a Brownian particle over an arbitrarily shaped
barrier. Based on the Mel’nikov–Meshkov result for the underdamped Brownian motion and the inverse
friction expansion of the underlying Fokker-Planck equation for strong friction, an overall rate formula is
constructed. This formula agrees in the weak friction regime with the rate obtained from a diffusion equation
in energy variables and, in the limiting case of strong friction with the rate following from a Smoluchowski
equation. Its validity is tested for Brownian motion in bistable potentials with parabolic, cusped, and quartic
barriers of different heights. The proposed formula is found to give a reasonable description of activated rate
processes even though the barrier is quite low. Our comparison also includes results from various different
crossover theories. In most of the cases considered the present formula is in considerably better agreement with
exact numerical rates than the other interpolation formulas.@S1063-651X~99!13610-9#

PACS number~s!: 05.40.2a, 82.20.Db, 82.20.Fd
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I. INTRODUCTION

The phenomenon of thermally activated escape of a c
sical particle from one metastable state to another by cr
ing a barrier between the two states, as originally propo
by Kramers in his seminal 1940 paper on chemical reac
rates@1#, has attracted a great deal of theoretical attention
recent years. For general reviews of the field see Refs.@2–6#.
The present state of the art can be found in Ref.@7#. The
dynamics of the Kramers model is governed by the Fokk
Planck equation~or its stochastic analog, the Langevin equ
tion! which describes the Brownian motion under the co
bined influence of an externally applied potentialV(x) and a
heat bath. The crossing of the particle over the barrier c
stitutes reaction. The phenomenological rate constants
the reaction are related to the reciprocal of the longest re
ation time of the system. This rate is characterized by
shape of the potential, the energy of thermal motionb21

5kBT, and the strength of the couplingg to the heat bath.
The Kramers model though simple exhibits generic featu
of many complex systems. Apart from chemical reactions
has found widespread applications in a multitude of ot
activated rate processes. In particular, it has been adopte
describe a variety of phenomena in condensed-matter p
ics, ranging from super-ionic conduction@8# and Josephson
junction theory@3# to a driven Ge photoconductor@9#. The
ring-laser gyroscope@10# and dye laser@11# are examples of
the Kramers problem in optical physics. Another interest
variety of its applications is the transport phenomenon
complex systems as it occurs in glasses@12# and proteins
@13#.

The enormous theoretical literature has evolved Kram
theory in many directions that include more formal deriv
tions of Kramers’ own results@14,15#, improvements of the
Kramers method in the weak@16–20# and moderate-to-high
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@14,21,22# friction regimes, extensions to the full dampin
range @6,17,18,23# and non-Markovian dissipation mode
@24,25#, generalizations to state-dependent friction@26#,
more complex potentials@27–33#, systems with many de
grees of freedom@34#, and cases without detailed balan
@35#. In most of these investigations the barrier heightE is
assumed to be much larger than the energy of thermal
tion bE@1. Of course, the presence of a relatively hi
barrier is vital for the notion of metastability and the fea
bility of a rate description. For these purposes, howeve
barrier height of already a fewkBT will suffice to separate
the inter-well decay time being of the order oft f exp(bE)
from the fast time scalet f on which the intra-well relaxation
takes place. In the above-mentioned asymptotic theo
1/(bE) itself, rather than exp(2bE), enters as a small pa
rameter; accordingly, the theories do not cover the wh
range of parameters where a rate description is appropr
Therefore, various different approaches have been put
ward in the literature to include finite-barrier height corre
tions to the escape rate@18,21–23,36,37#. A common disad-
vantage of these approaches is that they are all stro
dependent on aparabolicapproximation for the barrier. This
assumption, though, is not always met in experimental s
ations. For example, the barrier of charge transfer react
is often of a cusp-shaped form@27,30,38#. In such a case
large deviations of theoretical predictions from exact nume
cal rates are observed in the weak-to-intermediate frict
regime@30,31,33#. The latter holds true even though the ba
rier is extremely high,bE→`, to say nothing of low barriers
for which the problem of finite-barrier corrections still pos
a challenge.

In this paper we present accurate calculations of therm
activated rates for a symmetric double well potential a
compare these with known expressions, as well as wit
new rate formula constructed in terms of the Mel’nikov
Meshkov theory @17# for the energy diffusion regime
(g&1) and the expansion of the Fokker-Planck equation
reciprocal powers of the friction coefficientg for strong
damping (g@1). The calculations are performed for diffe
ent shapes of the potential barrier and different temperat
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and coupling strengths. In all the cases considered the
results are attained with the present rate expression. The
per is organized as follows: In the next section, we brie
review the Kramers rate problem. In Sec. III, a unified ra
expression valid for any barrier shape is constructed. Its u
ity is illustrated in Sec. IV by comparing with estimates
the rates from numerical calculations. Section V provide
summary.

II. PRELIMINARIES

In the framework of general rate theory, the escape
G2 can always be expressed byGTST

2 following from classi-
cal transition state theory~TST!

GTST
2 5HA2pbE

2`

0

dx e2bV(x)J 21

, ~2.1!

and a transmission factorm which is at most unity and de
scribes the deviation of the escape rate fromGTST

2

G25mGTST
2 . ~2.2!

In the above we have identified the transition state with
location of the maximum ofV(x) at x50 and set for conve-
nienceV(x)50. An early work which discussed non-TS
effects is the famous paper of Kramers@1#, who provided a
dynamical framework for the original concepts of Arrheniu
Proposing it primarily as a model of chemical reaction
Kramers studied the motion of a Brownian particle w
mass weighted coordinatex in a metastable potentialV(x).
The dynamics of the model is governed by the Fokke
Planck equation for the probability distributionP(x,v,t) of
finding the particle at timet at the phase space pointx,v

] tP~x,v,t !5@2v]x1V8~x!]v1g]v~v1b21]v!#P~x,v,t !,
~2.3!

where the prime denotes the derivative with respect tox.
Kramers solved the rate problem outlined above in terms
his flux over population method@1#. Within its scope, the
escape rate is defined as the ratio of a stationary diffus
current at the top of the barrier to the population of the w
He showed that depending on the coupling strength~friction
coefficient! g, there are two qualitatively different mecha
nisms determining the escape dynamics. For vanishin
small g, both the energy

«5 1
2 v21V~x!, ~2.4!

and the action

I ~«!5R dx v, ~2.5!

are almost conserved quantities undergoing slow diffus
motion. The rate limiting step is thus the excitation of t
particle to energies greater than the barrier energy~energy
diffusion regime!. In that case Kramers transformed th
Fokker-Planck equation~2.3! to a diffusion equation for the
probability density of the action
est
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] tP~ I ,t !5g] I I F11
2p

bv~ I !
] I GP~ I ,t !, ~2.6!

with v(I ) being the angular frequency at the actionI

v~ I !52p] I«~ I !, ~2.7!

and found a quasistationary probability flux of particles
action spacethroughI 25I (0)

I 252E
xp

0

dxA22V~x!, V~xp!50. ~2.8!

This results in a linear dependence of the rate ong for van-
ishingly weak coupling (g→0)

mwc
Kr 5gbI 2, ~2.9!

which is valid if bE@1, andmwc
Kr !1. It may be noted here

that the right-hand side of Eq.~2.9! is nothing but a weak
damping approximation for the dimensionless energy loss
the particle as it transverses the reactant region@17#.

On the other hand, for moderate-to-large frictiong local
equilibrium is established in energy, and the escape dyn
ics is dominated by collisions with the heat bath when
particle is near the top of the barrier. In this regime, the r
is limited by spatial diffusion across the barrier top~spatial
diffusion regime!. Accordingly, when constructing a quasi
tationary flux of particles out of the well, Kramers approx
mated the full potentialV(x) entering Eq.~2.3! by its para-
bolic barrier part

V~x!52
1

2
v2x21O~x3!, v252V9~0!, ~2.10!

and fully neglected the anharmonic correctionsV(x)
1v2x2/25O(x3). This yields for the spatial diffusion limit
transmission factor

mpb5A11
g2

4v2
2

g

2v
. ~2.11!

The above formula is valid forbE@1 and g,g2

5v2 /(2pbE) with v2 being the frequency at the bottom
of the well, i.e.,v2

2 5V9(x2). Consequently, it becomes a
ymptotically exact in the extreme high barrier~low tempera-
ture! limit, bE→`, in which case one will ultimately almos
always be in the spatial diffusion regime. Kramers deriv
the explicit expressions for the escape rate in these two
gimes, and noted the existence of a crossover region.

The ‘‘crossover problem’’ was tackled by a great numb
of investigators, most notably Bu¨ttiker, Harris, and Landaue
~BHL! @16#, Mel’nikov and Meshkov~MM ! @17#, and Pollak,
Grabert, and Ha¨nggi ~PGH! @25# ~see also a collection o
references in@5#!. In particular, BHL @16# extended the
asymptotic Kramers solution of Eq.~2.9! to the region of
weak-to-moderate frictiong. Their generalization for the en
ergy diffusion limit transmission factor reads

med
BHL5mwc

Kr
A114/mwc

Kr 21

A114/mwc
Kr 11

. ~2.12!
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The overall transmission factor for the full damping ran
can then be obtained by using anad hocmultiplicative factor
mpb @5#

mpb
BHL5med

BHLmpb, ~2.13!

which assures that the bridging expression reduces to
correct spatial diffusion limit. An alternative asymptotic s
lution for the energy diffusion regime and, accordingly,
interpolating formula were given by Mel’nikovet al. @6,17#.
These read

med
MM5A~mwc

Kr !, ~2.14!

A~y!5 expS 1

pE0

`

dx

lnH 12 expF2yS x21
1

4D G J
x21

1

4

D ,

and

mpb
MM5med

MMmpb. ~2.15!

The last equation also contains the correct limiting behav
at weak and strong damping, but more accurately capt
the crossover behavior thanmpb

BHL does. A generalization o
Eqs.~2.13! and~2.15! to a parabolic double well is straigh
forward @5,17#. More recently, PGH@25# generalized the
theory to an arbitrary time-dependent friction. They show
that the MM crossover formula can be obtained without a
ad hocbridging and gave a different approximation for th
energy loss. The PGH theory rate constant has been c
pared directly to reactive flux simulations@39#, and found to
provide a good description of the rate in the Kramers tu
over regime in many cases@25#. However, subsequent stud
ies have revealed some general situations for which P
theory will fail to correctly predict the escape rate@40#.
Therefore, new rate theories that account for these situat
have been set forth@19,41,42#.

Note that all the mentioned theories make extensive
of the parabolic barrier approximation. Only very recently
generalization of the flux over population method to an ar
trarily shaped barrier was put forward by one of the pres
authors@32#. In this way an interpolating formula was con
structed that approaches the correct limiting behavior
weak and strong damping. Its validity was tested for Brow
ian motion in bistable potentials with parabolic, cusped, a
quartic barriers. We found that the proposed express
agrees roughly to within 20% with exact numerical rates
bE510 regardless of the particular barrier shape. Howe
subsequent studies have revealed that with decreasingbE,
the accuracy of this formula deteriorates very rapidly so t
already forbE55 it deviates from the exact result up
40%. The latter holds true even though the barrier is pa
bolic. A possible reason for this is the failure of the gen
alized flux over population method to correctly predict t
transmission factor in the crossover region. Yet anot
source of errors may be finite-barrier corrections fully n
glected in all the above-mentioned crossover formulas
simple way to resolve both problems is presented in the n
section.
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III. IMPROVED INTERPOLATION FORMULA

During the past two decades one could broadly iden
two approaches of calculating the rate of thermally activa
escape of a particle over a barrier out of a well. One is
recognize the difficulty of obtaining exact rate expressio
excepting some special cases, such as a parabolic barrier
proceed to find the numerically exact rate. A number of
ficient methods for numerically integrating Brownian motio
on a grid have been devised during the past decade w
help to reveal and clarify some interesting phenomena in
transition region between the two extreme limits of weak a
strong friction @3,39,40,42–45#. A second approach was t
replace rigor with reasonable approximations. The advant
of having accurate analytical formulas as compared to
merical results of numerical methods is in the simplicity
analyzing such formulas with respect to the variation of p
rameters. A strategy that has gained much popularity in
cent years is entirely based on the underlying Fokker-Pla
equation and involves various different techniques, such
the Kramers flux over population method, the mean first p
sage time formalism, the generalized moment expans
technique, and the eigenmode expansion met
@1–3,5,22,23,28,31,32,34–37,45#. Another major class of ap
proximation methods rests on the transformation of the or
nal stochastic and dissipative dynamics by an infinite dim
sional Hamiltonian system@46,47#. The rate is then
calculated by means of the reactive flux@48# through an op-
timized planar dividing surface@25,29,30,40,49#. Both ap-
proaches are rather efficient when treating bistable poten
with high parabolicbarriers. However, complications arise
the barrier is not parabolic.

In this paper we choose a different starting point. It
based on the observation that exact solutions of the ba
crossing problem are available only in the limiting cases
underdamped and overdamped Brownian motion. Bef
proceeding two remarks are in order. First, by ‘‘exact so
tion’’ we mean a closed form expression for the escape
derivedwithoutusing high-barrier approximations. The der
vation is straightforward in both limits of weak and stron
friction where the dynamics is governed by one-dimensio
diffusion equations@Eqs.~2.6! and~3.5!, respectively#. In the
whole friction range such an expression cannot be obtai
with present mathematical techniques. Thus numerical m
ods must be used. The latter are, in principle, approxim
However, since the error of a general numerical calculat
is controllable and can be made as small as one wants
will refer to such a solution as thenumerically exactresult.
Second, we note that it is generally impossible to deriv
phenomenological rate description from the underlying d
sipative dynamics. As a consequence, there is no un
identification~precise definition! of the escape rate with dy
namical characteristics of Eq.~2.3!. Thus various different
determinations of this phenomenological quantity have
sulted. In the above we have already mentioned four ra
general approaches to this problem. The calculation of
ratio of a stationary current at the top of the barrier to t
population of the well, as originally proposed by Krame
@1#, is the method most frequently used in the pa
@2,3,5,22,31–34#. Alternative derivations are based on th
mean first passage time formalism@2,3,5,22# and the gener-
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alized moment expansion method@37#. The former identifies
the escape rate with the inverse of the mean time after w
a stochastic trajectory starting within the well passes the
chastic separatrix for the first time. While the latter det
mines the rate as the inverse of the mean relaxation t
given by the first moment of the equilibrium time correlatio
function@48#. Finally, a more precise definition of the kinet
rate is adopted in the eigenmode expansion method, w
recognizes the smallest nonzero eigenvalue of the Fok
Planck operator as the sum of forward and backward r
@3,21,22,28,36,45#. All the above-mentioned methods thoug
different give almost indistinguishable results in the hig
barrier limit. With decreasing barrier height the differen
between the various estimations for the escape rate beco
noticeable even though no approximations have been m
to derive these estimations. It is of order exp(2bE) and
comes from the different determinations of the rate const
One may note, however, that this difference is usually m
smaller than the error involved in asymptotic rate theor
due to neglecting finite-barrier corrections, which are of
order of 1/(bE).

Turning back to the problem of interest we first consid
the weak damping limit,g→0, where Eq.~2.3! can be ap-
proximated by a diffusion equation for the action, Eq.~2.6!.
This equation is readily solved exactly by the flux over pop
lation method to yield for the transmission factor in a pote
tial with only one metastable well@5#

m~g→0![mwc
2 5gH bGTST

2 E
0

I 2

dI exp@2b«~ I !#

3E
I

I 2

dI8
v~ I 8!

2pI 8
exp@b«~ I 8!#J 21

. ~3.1!

The generalization to a bistable potential with minima atx6

is straightforward reading

m~g→0!5
mwc

2 mwc
1

mwc
2 1mwc

1
, ~3.2!

wheremwc
1 is given by Eq.~3.1! with the transcription2→

1 and

GTST
1 5HA2pbE

0

`

dx e2bV(x)J 21

. ~3.3!

In the opposite limiting case (g→`) the reaction coordi-
nate is a slowly varying quantity undergoing diffusive m
tion. In this regime, the velocity may be eliminated adiaba
cally from Eq.~2.3! leading us to a Smoluchowski equatio
for the reduced probability

P~x,t !5E
2`

`

dvP~x,v,t !. ~3.4!

The equation is@50,3#

] tP~x,t !5]xD~x!@b21]x1V8~x!#P~x,t !, ~3.5!

where
h
o-
-
e
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D~x!5g211g23V9~x!1O~g25!. ~3.6!

The exact transmission factor is then easily obtained in te
of the mean first passage time formalism to give

m~g→`!5A2p

b F E
2`

`

dx ebV(x)/D~x!G21

. ~3.7!

In the limit of a high parabolic barrier this approach leads
a perturbative approximation of the form@50#

mpb~g@1!5v/g2~v/g!312~v/g!51O~g27!,
~3.8!

whose terms coincide, of course, with the correspond
terms in the series expansion of Eq.~2.11!, in powers ofg21.
For a bistable potential with an arbitrary barrier height e
plicit expressions are available only for the first two terms
the inverse friction expansion. These are

m~g→`!5ve /g2q/g31O~g25!,

ve5A2p/bF E
x2

x1

dx ebV(x)G21

, ~3.9!

q5
ve

2b3/2

A2p
E

x2

x1

dx V82~x!ebV(x).

Finally, we note that exact results for the full friction rang
are available only in the extreme high-barrier~low tempera-
ture! limit, bE→`, and only for a potential with a paraboli
barrier, Eq.~2.15!.

A. Unified rate expression

Now let us see how this asymptotic information can
used when constructing an accurate rate expression. On
count of Eq.~2.15! one may assume that the overall tran
mission factorm for an arbitrary bistable potential has
multiplicative form ~MF! reading

mMF5medmsd. ~3.10!

Here med, respectively,msd are transmission factors for th
energy, respectively, the spatial diffusion limit. These fact
must be determined so that they approach the TST valu
the two opposing limits

med~g→`!5msd~g→0!51. ~3.11!

It may be noted that the ansatz of writing a uniform formu
in the multiplicative form is extensively used in the literatu
on activated rate processes~see, e.g., Refs
@5,6,17,18,23,26,28,32,33,44#!. A reason for this seems to b
the belief that it yields much better results than nonmultip
cative overall rate expressions. In the following we shall s
that this assumption is not actually necessary for accura

B. Weak and intermediate damping

With Eq. ~3.10! the construction of a unified rate formul
reduces to two separate problems, namely, the derivatio
med andmsd. A straightforward approach to the energy d
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fusion limit transmission coefficientmed is based on two re-
marks. First, when deriving their weak-to-moderate fricti
result, Eq.~2.14!, Mel’nikov et al. @6,17# did not make any
assumption on the shape of the potential barrier. Secon
the limit of vanishing friction a correct rate formula shou
reduce to Eq.~3.2! which is exact. For a bistable potenti
this immediately yields the following rate expression:

med5
A~mwc

2 !A~mwc
1 !

A~mwc
2 1mwc

1 !
, ~3.12!

whereA(y) is the MM depopulation factor defined by Eq
~2.14!. As we shall see in Sec. IV, such the simple transf
mation of the MM rate formula reduces the error in the we
damping regime by factors and even by orders of magnitu
Mel’nikov and co-workers@44# also have attained a simila
reduction of errors in this regime but with much more i
volved mathematics@18#.

C. Spatial diffusion regime

The construction of a spatial diffusion limit transmissio
factor is a bit more complicated. In this case, the interpo
tion problem consists in answering the following questio
What can be said about the behavior ofmsd in the full damp-
ing range@0,̀ ) being based on the asymptotic informatio
in Eqs. ~3.9! and ~3.11!? Clearly, not much, because th
asymptotic expressions~3.9! and ~3.11! have nothing in
common with each other. In addition, the inverse fricti
expansion results in a divergent series. Of course, it is p
sible to invoke some summation techniques, such as P´
approximation and Borel summation, in order to ascribe
effective sum to a divergent series@51,52#. However, to be
accurate, all these summation techniques usually require
knowledge of tens of terms in an asymptotic series. It
evident that such luxurious information is not available
principle for the problem we are interested in here, wh
only the first two terms are generally known. How could w
proceed in such a difficult case in order to find an accur
formula connecting Eqs.~3.9! and ~3.11!?

An obvious way to resolve the above-mentioned probl
is to employ instead of summation techniques an effici
interpolation method which is capable of treating crosso
phenomena where just a few asymptotic terms are availa
Only very recently has such a method been developed
summation of divergent field-theoretical series@53#. The
method is based on an algebraic self-similar renormaliza
~SSR! of asymptotic series, with control functions defined
crossover conditions. To make this paper self-contained
briefly outline the main ideas of the SSR approach. Assu
that a physical characteristic we are looking for is presen
by a function f (y) in the interval @0,̀ ) and has a powe
series expansion of the form

f ~y!5 (
m50

amym, ~3.13!

where the expansion coefficientsam are derivable by a kind
of perturbation theory. Being truncated at differentm this
series forms a divergent sequence of approximants$ f k(x)%
defined by
in

-
k
e.

-
:

s-
de
n
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f k~y!5 (
m50

k

amym ~y→0!. ~3.14!

Assume further that an asymptotic behavior off (y) at large
y is also known

f as~y!5 lim
y→`

f ~y!. ~3.15!

Two important points of the SSR approach are the followin
First, we have to rearrange the sequence in such a way
improve its convergence properties. The latter is achie
with the help of a simple algebraic transformation@53#

Fk~y,sk!5 (
m50

k

amym1sk, ~3.16!

whose powers play the role of control functions. This tran
form increases the approximation order fromk to k1sk thus
changing the convergence properties of the renormalized
ries. The objective is to find a self-similar transformatio
from Fk21(y,sk21) to Fk(y,sk) such that having only a few
initial terms we would be able to extrapolate them to high
orders ofk defining finally an effective limitf * of the origi-
nal sequence. A straightforward application of this strate
results in a sequence of nested roots reading@53#

f k* 5„$•••@~ f 0
1/n11B1y!n1 /n21B2y2#n2 /n3

•••%nk21 /nk

1Bky
k
…

nk ~3.17!

with f 05a0. The parametersnk and Bk appearing in Eq.
~3.17! are two sets of control functions which govern th
convergence of the sequence$ f k* (y,nk ,Bk)%.

Since we are interested here in treating crossover p
nomena, yet another important point of the SSR procedur
to self-similarly connect the left and right asymptotic expa
sions of a function on a given interval. The latter is attain
with the requirement that the found approximation~3.17!
satisfies the asymptotic condition~3.15!

f k* ~y→`!5 f as~y!. ~3.18!

This defines the sets of crossover indexes$nk% and crossover
amplitudes$Bk%. Practical applicationof the SSR approach
is the following. If we want to construct akth-order approxi-
mation we may at once write down it in the form of nest
roots, Eq.~3.17!, and directly definenk and Bk from the
condition ~3.18!.

Clearly, an analogous procedure can be constructed
self-similarly connect an asymptotic expansion at the ri
boundary of the interval@0,̀ ) with a known asymptotic
form at the left boundary wherex→0. But we will not do so
here. Instead, we cast the problem of interest, Eqs.~3.9! and
~3.11!, into the standard form considered above by defin
f 5(g/ve)msd andy5g22. This yields

f ~y!5H 12~q/ve!y, y→0

1/~veAy!, y→`.
~3.19!
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When applied to Eq.~3.19!, the second-order crossover a
proximation gives

msd5F11
g4

ve
4 S 11

4q

nveg
2D nG21/4

, ~3.20!

wheren is any number from the interval@0,2#. As prescribed
by Gluzman and Yukalov@53#, if the condition~3.18! gives
several solutions for control functions, one should opt for
solution that leads to the decrease ofBk with increasingk. It
is not difficult to see, however, that this prescription does
fit well in the present case. Instead, we suggest to determ
the free parametern from the requirement that for a parabol
barrier Eq.~3.20! reproduces the fifth-order term in the in
verse friction expansion~3.8!. This givesn58/7. The result-
ing spatial diffusion limit transmission factormsd reduces to
the TST value at zero damping and, in the strong damp
limit to Eq. ~3.9!. Besides, it becomes effectively a third
order approximation for a purely parabolic barrier. The ov
all rate formula thus obtained@Eqs.~3.10!, ~3.12!, and~3.20!
with n58/7] is exact in both limits of underdamped an
overdamped Brownian motion. One may thus expect tha
will be reasonably accurate in the crossover region as w

Before closing this section we note that the SSR appro
allows one to go beyond the standard MF approximation
the transmission factorm. For this purpose it is enough t
self-similarly connect the strong damping~Smoluchowski!
expression~3.9! with the corrected MM formula~3.12! rather
than with the TST result. In that event, the SSR appro
gives for the overall transmission factor

mSSR5Fmed
241

g4

ve
4 S 11

7q

2veg
2D 8/7G21/4

. ~3.21!

By construction, it approaches the correct limiting behav
for both regimes of weak and strong friction. Applications
bistable potentials with different barrier shapes show tha
these regimes the interpolating formulasmSSR agrees well
with the MF approximation, Eq.~3.10!, and may slightly
deviate from the latter in the intermediate friction regi
0.1<g<10.

IV. APPLICATIONS

A. Numerical results

The proposed formulas are tested for Brownian motion
a symmetric double well of the form

V~x!5
E

b2a
~axb2buxua!, 0,a,b, ~4.1!

whose barrier part2bEuxua/(b2a) varies with the param-
eter a from cusped (0,a<1) to smooth (1,a,2), para-
bolic (a52), and higher order (a.2) barriers. Numerically
exact results for the least nonvanishing eigenvalue in
potential were calculated in a previous paper@32# for a para-
bolic (a52,b54), a cusped (a51, b54), and a quartic
(a54, b56) barrier. The calculation was performed f
bE510 by a path integral method described elsewh
e

t
ne

g

-

it
l.
h
r

h

r

n

n

is

e

@42,54#. However, since we are interested here not only
high- but also in low-barrier heights, we have carried o
similar calculations for smaller values ofbE. The results for
the least nonvanishing eigenvalue are presented in Table
addition, we have recalculated the least nonvanishing eig
value in the quartic double well forbE510 andg50.01. It
is 0.446@-5# rather than 0.485@25# as was reported in@32#.
The reason is that in the weak friction limit, the long tim
behavior is governed by a set of low lying eigenvalues t
are all very small. In such a case, calculations over very lo
times are required to get a convergent result for the fi
nonzero eigenvalue, even though this eigenvalue is w
separated from the rest of the spectrum of the Fokker-Pla
operator. The previously reported result 0.485-5 was
tracted from the time evolution of the distribution function
the intermediate time domain where the single exponen
decay had not yet been reached.

B. Comparison of the interpolating formulas with numerical
results for the parabolic double well

As closed form expressions for the leading nonvanish
corrections of the Kramers rate in powers of the inverse b
rier height are available only for potentials with parabo
barriers, it would be instructive to begin our comparison w
a parabolic barrier double well (a52, b54). In this case, a
second-order perturbation theory based on a Rayleigh q
tient method gives for the spatial diffusion limit transmissi
factor @22#

TABLE I. First nonzero eigenvalue in a symmetric double w
potential, Eq.~4.1!, calculated for parabolic (a52, b54), cusped
(a51, b54), and quartic (a54, b56) barriers of different
heights. Exponential notation@2k# means that the number prece
ing is to be multiplied by 102k.

Parabolic Parabolic Parabolic Cusped Quarti
g bE51.25 bE52.5 bE55 bE55 bE55

0.01 0.681@-2# 0.204@-2# 0.269@-3# 0.263@-3# 0.299@-3#

0.05 0.300@-1# 0.908@-2# 0.120@-2# 0.120@-2# 0.134@-2#

0.1 0.546@-1# 0.167@-1# 0.219@-2# 0.209@-2# 0.239@-2#

0.25 0.112 0.352@-1# 0.453@-2# 0.410@-2# 0.504@-2#

0.5 0.176 0.565@-1# 0.711@-2# 0.625@-2# 0.817@-2#

0.75 0.215 0.701@-1# 0.866@-2# 0.738@-2# 0.102@-1#

1 0.235 0.783@-1# 0.954@-2# 0.826@-2# 0.114@-1#

1.5 0.241 0.839@-1# 0.101@-1# 0.893@-2# 0.124@-1#

2 0.225 0.823@-1# 0.100@-1# 0.910@-2# 0.123@-1#

3 0.182 0.728@-1# 0.927@-2# 0.904@-2# 0.111@-1#

4 0.148 0.630@-1# 0.838@-2# 0.865@-2# 0.974@-2#

6 0.105 0.481@-1# 0.685@-2# 0.779@-2# 0.757@-2#

8 0.812@-1# 0.382@-1# 0.570@-2# 0.662@-2# 0.611@-2#

10 0.658@-1# 0.315@-1# 0.484@-2# 0.613@-2# 0.509@-2#

20 0.334@-1# 0.165@-1# 0.267@-2# 0.378@-2# 0.272@-2#

30 0.224@-1# 0.111@-1# 0.181@-2# 0.273@-2# 0.184@-2#

100 0.673@-2# 0.335@-2# 0.554@-3# 0.835@-3# 0.558@-3#

1000 0.673@-3# a 0.335@-3# a 0.555@-4# a 0.769@-4# a 0.558@-4# a

aExact estimate of the eigenvalue calculated from the respec
Smoluchowski equation.
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msd
FBC5mpbH 12

3

16bE S 12n

11n D 2

1
3

512b2E2 S 12n

11n D 4

3F352
16~30n31103n2170n112!

~12n!~3n3113n2113n13!
G J , ~4.2!

wheren5mpb
2 . It contains all contributions to the rate up

(bE)22. An alternative approach to this problem, that giv
finite-barrier corrections in the whole friction range, has be
put forward by Mel’nikov @18#. However, this method ap
pears to be very complicated for practical applications a
we will not consider it here.

The relative error made bymsd
FBC in the transmission facto

of the parabolic double well is exhibited in Fig. 1, togeth
with those of the other theoretical predictions discus
above. Since the proposed formulasmMF and mSSR give in
this case results that differ at most by a few percent, we sh
only those formSSR. As anticipated, for a high barrier (bE
510) the rate expression obtained from the Rayleigh q
tient, Eq.~4.2!, is most accurate in the spatial diffusion r
gime. Forg*4 the relative error made bymsd

FBC is less than
0.03%. With the present expressionmSSRan analogous accu
racy is attained forg*10. The other three interpolating for
mulas overestimate the rate by;4% in this damping region
Away from the spatial diffusion regime, that is, in the cros
over region where the rate reaches its maximal value ag
'1.5 and then falls off with further decreasingg, the relative
error made bymsd

FBC rapidly increases and very soon grow
out of the scale of the figure. In this region the best agr
ment is attained with the PGH crossover theory, which
derestimates the rate by 0.3%. While the MM and SSR
terpolating formulas give results that are larger than
numerically exact transmission factor by 3% and 5%, resp
tively. The BHL expression is least accurate in the crosso
region, underestimating the rate forg51 by 17%. In the

FIG. 1. Percentage errors, 1003~approximate–exact!/exact,
made inm for a parabolic double well, Eq.~4.1! with a52, b54,
andbE51.25, 2.5, 5, and 10. Solid lines,mSSR, Eq. ~3.21!; dashed
lines, mpb

MM , Eq. ~2.15!; dot-dashed lines, PGH crossover theo
@25#; crosses,mpb

BHL , Eq. ~2.13!; open circles,msd
FBC, Eq. ~4.2!.
n

d

r
d

w

-

-

-
-
-
e
c-
er

weak damping regime (g,1) the present expression is wit
maximally 2% considerably better than the other three in
polating formulas, which have maximal relative errors
more than 15%. The small deviations, which still exist in t
underdamped regime, betweenm2

CFE and estimates of the
transmission factor from path integral calculations can
fully taken into account by the difference between the flu
over-population rate expression@Eqs.~3.1! and~3.2!# and the
least nonvanishing eigenvalue.

For a relatively low barrier (bE55) the overall situation
remains almost the same. In the strong damping regimeg
*10) msd

FBC and mSSR are characterized by a similar acc
racy, underestimating the transmission factor by less t
1%. The PGH theory is with maximally 2% only a bit wors
while mpb

BHL and mpb
MM deviate up to 9%. In the crossove

region (g;1.5) the SSR and PGH expressions deviate
roughly the same amount, the former overestimates the
by 2% while the latter underestimates it by 3%. The relat
errors of the MM and BHL interpolating formulas in thi
region are 6% and 15%, respectively. For weak damp
(g,1) the present expression is again in considerably be
agreement with numerical calculations than the other th
interpolating formulas. It underestimates the transmiss
factor by less than 6%, while the other three approac
overestimate it by more than 30%.

With further decreasing barrier height all the theoretic
expressions become relatively inaccurate. Even the pre
formulamSSR, which is exact for both weak and strong fric
tion, deviates in these limits forbE52.5 by 17% and 10%,
respectively. For strong friction the deviations are due to
difference between the mean-first passage-time express
for the rate and the least nonvanishing eigenvalue. This
ference becomes noticeably large forbE,5. The same rea-
soning holds true for the limit of underdamped motion,
which casemSSRreduces to the flux-over-population expre
sion, Eq.~3.2!. As far as the Rayleigh quotient formulamsd

FBC

is concerned, the reason for its failure in the strong damp
limit is different. It is caused by the dependence, forbE
,5, of the denominator of the Rayleigh quotient on the d
tailed shape of the trial function@36,37#, the fact fully ne-
glected by Talkner@22# in his derivation of Eq.~4.2!. The
above observations indicate that the rate description a
whole looses its meaning for too low barriers. In such a ca
the equilibrium distribution no longer allows an unambig
ous definition of the populations of the different metasta
states and, correspondingly, the rate constants, although
long-time dynamics may still be governed by a single le
nonvanishing eigenvalue that is well separated from the
of the finite eigenvalues@36,45#. It is remarkable, however
that the accuracy of the interpolating formulamSSR deterio-
rates with decreasing barrier height only slowly. Thus
instance, its maximal relative error for a very low barri
(bE51.25) is 24%. It is not so bad, taking into account th
the other interpolating formulas deviate in this case by 4
and over.

Summarizing the results of this subsection, the pres
treatment is characterized by the best predictions for the
in both regimes of weak and strong friction. As long as t
rate description is valid, the relative errors made in the
regimes by the proposed formulasmSSRandmMF are less by
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nearly one order of magnitude than those of the BHL, M
and PGH expressions. In the crossover region, the accu
of all methods is a few percent, excepting the BHL meth
The latter is least accurate in this regime, underestima
the rate by more than 15%.

C. Cusped and quartic double well potentials

Next we apply the present approach to a cusped an
quartic barrier. Since the standard rate expressions discu
in Sec. II are not applicable in such a case, we will comp
to an interpolating formula suggested in a previous pa
@32#. Based on the MM weak damping result@Eq. ~2.14!# it
combines a generalized spatial diffusion limit transmiss
factor with a properly defined energy loss of the particle
oscillation. The former is derived by approximately solvin
the Fokker-Planck equation while the latter is obtained fr
the deterministic particle dynamics. In the following we w
refer to this approach as the deterministic method.

Relative errors made by the different interpolating form
las in the transmission factor of a cusped double well pot
tial are shown in Fig. 2. Since theoretical predictions o
tained with mMF and mSSR are almost indistinguishable i
this case, both expressions are presented by one curve i
figure. Moreover, we note that unlike smooth potentials
which an accuracy of 0.01% is easily attained with a m
computational effort, path integral calculations for a cusp
potential are much less stable. In fact we were able to g

FIG. 2. Percentage errors made in the transmission factor f
cusped double well, Eq.~4.1! with a51, b54, andbE55 and 10.
Solid lines,mSSR, Eq. ~3.21!; dot-dashed lines, deterministic ap
proach@32#.
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cy
.
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r

d
n-

erate, in a reasonable amount of time, convergent res
only with two to three stable digits. Whereas more accur
results would require an excessive computational effort. T
is the reason for slight oscillations of the curves presente
Fig. 2. Turning back to our comparison one sees that
present approach gives the best predictions in the whole
tion range regardless of the barrier height. As is the case
the parabolic double well, the accuracy of the method de
riorates with decreasing barrier height slowly. The maxim
deviation from the exact numerical rate varies from 8%
bE510 to 14% forbE55. This in contrast to the determin
istic approach, whose maximal relative error are 20% a
37%, respectively.

Finally, we consider the rate of escape over a quartic b
rier (a54, b56). The corresponding results are shown
Fig. 3. We find that in this case the interpolating formul
mMF andmSSRnoticeably differ from each other in the cros
over region (g'1.5) where the former overestimates the ra
while the latter underestimates it. The maximal relative
rors for mSSR are 4% and 12% forbE510 and 5, respec-
tively, while mMF deviates in both cases up to 8%. The d
terministic approach is, with maximally 32% and 39%
considerably worse thanmSSR andmMF.

V. CONCLUSIONS

Based on the exact rate expressions available in the lim
of underdamped and overdamped Brownian motion we c
structed a formula for the transition rate over a barrier
arbitrary shape by means of the self-similar normalizat

a FIG. 3. Same as in Fig. 1 but for a quartic double well, Eq.~4.1!
with a54 andb56. Dashed lines are formMF , Eq. ~3.10!.
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method. Moreover, path integral calculations were presen
for the least nonvanishing eigenvalue in a double well pot
tial with a parabolic, a cusped, and a quartic barrier. T
calculations were performed over a broad range of the f
tion coefficient g and for different temperatures~barrier
heights! bE. The results for a parabolic barrier were used
analyze the relative validity of existing approaches to
calculation of the overall rate expression. Besides the S
method, our comparison includes predictions from the BH
MM, and PGH crossover theories. We found that the pres
approach is most accurate in the regimes of weak (g,1)
and strong (g.3) damping. In both regimes its maxima
relative error is smaller by factors and even by orders
magnitude than those of the other three approaches. In
crossover region (g;1.5) the SSR, MM, and PGH expres
sions deviate by a few percent from the exact result, wh
the BHL formula is the worst, systematically underestim
ing the rate in this region by over 15%. The above obser
tions hold true as long as the barrier height is high enou
bE*5. Otherwise, all the theoretical expressions beco
relatively inaccurate. This failure is due to the equilibriu
properties of the system that do not allow an unambigu
definition of the populations of the different metastable sta
for too low barriers. Although the difference between t
mean-first passage-time expressions for the rate and the
nonvanishing eigenvalue is ‘‘exponentially small,’’ forbE
&3 it does not much differ in magnitude from the ‘‘leading
algebraic corrections in powers of the inverse barrier heig
Accordingly, the rate description looses its meaning for v
low barrier heights. However, even in such a difficult situ
on
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tion the present approach gives a reasonable descriptio
the escape dynamics, underestimating the numerical rate
bE51.25 up to 24%. For comparison, the maximal errors
the other three approaches are nearly two times larger in
case. Finally, applications to nonparabolic~cusped and quar
tic! barriers showed that the SSR method is in considera
better agreement with the numerically exact rates than
deterministic approach to the crossover problem suggeste
a previous paper@32#.

Summarizing the results of this work, one may conclu
that the present method offers a systematic strategy for c
structing explicit analytical expressions for the rate valid
the whole parameter space. We note the relative ease
which highly accurate predictions for the escape rate can
obtained using the SSR technique. The accuracy of
method in the crossover region can be further improv
when more terms of the asymptotic expansion are availa
Although this whole paper was limited to a one-dimensio
barrier crossing process with Markovian dissipation, the
proach may be generalized to the case of memory frict
and systems with many degrees of freedom. Yet another
teresting variety of its applications is the crossover pheno
enon in systems without detailed balance, the problem tha
difficult to treat by other means.
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